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ARCHITECTURE TUNING OF A REAL-TIME SIGNAL SORTER

IN A DENSE ENVIRONMENT

INTRODUCTION

Signal sorting involves the correlation of the mass of signals detected by a receiver with the
individual sources that generate each signal. The purpose of the receiver is to capture and measure
the characteristics of the various signals that comprise the electromagnetic environment. The receiver
attempts to separate the individual pulses and determine their parameters. These measured param-
eters include the direction of arrival, carrier frequency and pulse width. These measured values for
each pulse seen by the receiver are expressed in digital form and are the outputs of the receiver.
The outputs are provided in real-time to the signal sorter. The signal sorter receives this pulse train
in which the individual pulses might belong to many different emitter sources. Based on measure-
ments on the individual pulses, the signal sorter should recognize the emitters present in the en-
vironment and separate the interleaved signal into the individual sources.

This separation and identification of emitters is extremely important in a threat environment.
The needs in such an environment are to separate the friendly emitters from the unfriendly emitters
and also to determine the number and type of unfriendly emitters. Such threat environments are
usually characterized by a large concentration of electromagnetic activity, making the real-time
signal sorting problem even more difficult.

Before a detected signal may be correlated with a particular emitter, a file on that emitter must
first be established by the signal sorter. These files are generated by the signal sorter using measured
parameters such as carrier frequency (CF), pulse width (PW), direction of arrivals (DOA), latest time
of arrival (TOA), and computed parameters such as pulse repetition interval (PRI).

Many irregularities could be present in the set of signals detected by the signal sorting system
making the sorting task much more difficult. Signal drop out, signal overlap, measurement incon-
sistencies, and intentional variation of the signal parameters by the emitter may all contribute to the
variations seen by the signal sorter. If these irregularities are severe, extra hardware and/or software
must be added to alleviate the effects of the signal variations. This research has focused only on the
problem of high data rates caused by the dense environment. Current research is being performed
on the added problems of signal irregularities, such as frequency agile emitters, to the tasks of signal
sorting. This work will be documented in future reports.

The high data rate compounds the signal sorting problem by requiring high throughput rates in
order to achieve the real time requirements. Since airborne platforms are to use the signal sorting
system, a brute force approach using a single large powerful computer is not feasible. Efficient use
of smaller microprocessors is needed to keep up with the high data rate and the real time processing
requirements.

A software model for a signal sorting system to handle greater than a million pulses per second
of radar signals, in a dense environment has been developed. A simulation of the environment and
a hardware model of the signal sorter have also been developed. Based on the results of the simula-
tion, the hardware model was constructed.

Manuscript submitted May 8, 1981.
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The purpose of this research is to investigate the application of dynamic architecture tuning to
the signal sorter system in order to improve performance. Several techniques have been investigated
and reported in this report. Test runs have been made for these different architectures using the
software simulation.

The term tuning implies that the computer system structure is adjusted to solve the given ap-
plication more efficiently. Dynamic tuning implies that changes in the computer system structure
could occur during operation based on real-time measurements on the state of the system. Using
algorithms determined through simulation, the sorter dynamically reconfigures itself in a true feed-
back control manner to optimize its performance under the various signal environments.

A brief description of the environment simulation and the computing system which has been
built are given in the next few sections. This is followed by the investigation of dynamic tuning
and its effect on system performance.

ENVIRONMENT SIMULATION

In order to design and simulate a signal sorting system, a software simulation model of the
environment was first constructed. This model is capable of generating interleaved pulse trains
representing several types of emitters such as would be encountered in a real environment. Regular
emitters which do not have intentional variations of their parameters are considered to be the pre-
dominant type of emitter seen. Exotic emitters which intentionally vary their PRI or Carrier
Frequency on a pulse to pulse basis are also represented in the environment simulation. Another
class of emitters which is also included in the environment model is the Pulse Group in which
groups of pulses rather than a single pulse are transmitted at every pulse group interval.

The parameters associated with each emitter such as carrier frequency, PRI, emitter location,
etc. are randomly selected from a uniform distribution with limits representing a practical range of
values. A variation in some of the parameters is added on a pulse to pulse basis to simulate any
measurement irregularities, emitter agility and emitter drift. These variations are also selected from
uniform distributions which represent the expected range of values. Sufficient flexibility is included
in the model to permit the selection of various signal densities in different runs and to allow the
same environment to be tested against several sorter designs.

Simulation of the electromagnetic activity seen by the receiver is done in the DAGE and EMIT
subroutines; a listing for each is included in the appendix. The combination of these routines can
provide various environments in terms of the number of emitters seen, the location of these emitters
with respect to the receiver, and the parameters associated with the electromagnetic transmissions
from each emitter. It is also possible to use the same environment in any number of runs. This
capability allows different signal sorter architectures to be compared with a common data base and
also permits the parameters associated with a single architecture to be tuned for optimal performance.

Definition of the parameters associated with each emitter is performed by the DAGE routine.
Values for each parameter are randomly selected by DAGE from a distribution of expected values
for that parameter. A list of the parameter array defined for each emitter is shown in Fig. 1. After
DAGE initializes values for all parameters in every emitter, control is passed to the EMIT routine.

Time varying parameters for each emitter are modified and updated on a pulse-to-pulse basis
in the EMIT routine. Calculation of both the emitter main beam power level at the receiving antenna
and the time of arrival (TOA) of the transmitted pulse at the receiving antenna are done in the
EMIT routine.
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E(I,J) WHERE I = EMITTER NUMBER
J = DEFINED BELOW

1. Dx - x DISPLACEMENT IN METERS
2. Dy - y DISPLACEMENT IN METERS
3. POWER OF EMITTER (INCLUDES ANTENNA GAIN)
4. MAINLOBE SIZE - OF EMITTER IN DEGREES
5. SIDELOBE LOSS - IN dBs DOWN DROM MAIN BEAM GAIN
6. MAX. ANTENNA ANGLE - UPPER SCAN LIMIT OF EMITTER ANTENNA IN DEGREES
7. SCAN RATE - IN Hz
8. PRI - PULSE REPETITION INTERVAL OF EMITTER IN SECONDS
9. PULSE WIDTH - IN SECONDS

10. FREQUENCY - IN GHz
11. ON TIME - TIME AT WHICH THE EMITTER IS TURNED ON
12. OFF TIME - TIME AT WHICH THE EMITTER IS TURNED OFF
13. RCVR POWER - POWER LEVEL FROM EMITTER SEEN AT THE RECEIVER

ANTENNA
14. TOA-TIME OF ARRIVAL OF TRANSMITTED PULSE AT THE RECEIVED ANTENNA
15. DOA - DIRECTION OF ARRIVAL OF TRANSMITTED PULSE AT THE RECEIVER

ANTENNA
16. FLAG - SET FOR DURATION OF PULSE
17. INITIAL ANTENNA ANGLE.- INITIAL POSITION OF EMITTER ANTENNA IN DEGREES
18. Dz - z DISPLACEMENT IN METERS
19. MIN. ANTENNA ANGLE - LOWER SCAN LIMIT OF EMITTER ANTENNA IN DEGREES
20. Vx - x VELOCITY COMPONENT OF EMITTER PLATFORM
21. Vy - y VELOCITY COMPONENT OF EMITTER PLATFORM
22. Vz - z VELOCITY COMPONENT OF EMITTER PLATFORM
23. TYPE: -1-MOVING EMITTER, O-FIXED, +1-COLLISION COURSE
24. SPARE
25. SPARE

Fig. 1 - Field definition of the parameter array for each emitter

A model of a receiver and antenna system was also developed in the signal sorter design process.
The philosophy of the antenna/receiver system was to model a feasible system that could be effec-
tively used by a signal sorting system. The antenna system which is more suitable for this applica-
tion is an array antenna with a beam forming network. The receiver simulation consists of 16 crystal
video detectors, one at each beam port of the antenna system. Values for the sensitivity, bandwidth,
gains, etc., were chosen to be well within the limits of current technology. The ability to measure
the direction of arrival on a pulse to pulse basis was modeled in the antenna/receiver system, as this
parameter is very useful in the sorting function of the system. Amplitude measurements from the
crystal detectors at each beam are used to establish direction of arrival information. All the measured
values are then digitized before being passed to the processing system for analysis and sorting.

CURRENT SYSTEM CONFIGURATION

A block diagram of the hardware configuration of the signal sorting system is shown in Fig. 2.
It combines both parallel and pipeline architectures. Various stages of the pipeline structure are
separated by first-in-first-out (FIFO) buffers to synchronize the rate of data flow.

In implementing the proposed architecture, the signal sorting task is divided into several
subtasks: presort, identification and file generation, list forming of expected arrivals, and content
addressable memory (CAM) load. The presort consists of a CAM whose contents are continuously
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Fig. 2 - Signal sorting system

updated based on the known active emitters. The received data are compared in the CAM for a
MATCH/NO MATCH indication. This stage is used as a filtering to the data stream and therefore
reduces the rate of the data flow into the remaining stages of the pipeline. The identification and
file generation stage receives only the unmatched data and correlates this to the file of previously
identified emitters. The result of processing the unmatched data is either the addition of new
emitters to the file or updating the file entry of a known emitter.

The LIST Forming Processor

The LIST consists of a number of FIFO buffers which are ordered as a sequence of time slots.
Each buffer is loaded with those emitters whose expected next arrival times fall within the same
time slot. The contents of the FIFOs comprising the LIST are loaded into the CAM one emitter at
a time. No ordering is done on the data within a given FIFO, other than the built-in first-in-first-out
characteristics of the buffer. Figure 3 illustrates the LIST and the CAM loading.

An emitter is loaded into the FIFO buffer corresponding to its next time of arrival (NTOA).
The association of a FIFO buffer with NTOA is determined by the value of some middle bits of the
NTOA referred to as "time slot" or "time window" bits. In order to have a uniform distribution of
the emitters in the FIFO buffers, and to be able to load the emitter parameters into the CAM to
provide the highest hit ratio, the time slot should be a function of the distribution of the PRI's of
the emitters.
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I CAM LOAD BUFFERL…-____-___-____
Fig. 3 - LIST forming/load CAM stages

If we assume a uniform distribution of PRIs over some known range of values for an environ-
ment, then for given values of the highest and the lowest PRI of the emitters in this environment,
a time window for each FIFO could be selected based on the following:

NTOA

| I M I| 1 N

let M = # of middle bits used as a time slot (M > 0)

N = # of bits to the right of the time slot in the NTOA work (N > 0). This is the number
of bits the NTOA word must be shifted to position the M "time slot" bits as the least
significant bits of the word.

then M and N should satisfy

(1) 2N <Minimum PRI

(2) 2N+M >Maximum PRI

where the value of the least significant bit (LSB) of the PRI word has the same weight as the
LSB of the NTOA word and the real-time clock. The value of the LSB in these simulation results
is 1 Ms.
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The value of M determines the number of FIFO buffers to be used. That is, the number of
FIFO buffers in the LIST will be 2M. In order to minimize the hardware, M should be kept to a
minimum value which satisfies relations (1) and (2). Therefore these relations could be rewritten as:

2N 6 PRIL or N < [Log2 PRIL]

2N+M > PRIH or N + M = [Log2 PRIHI + 1

for PRIL and PRIH in Ls,

where [ ] indicates the integer value.

As an example let PRIL = 300 Ms, PRIH = 2000 ps.

The constraints (1) and (2) show:

N68 or 28 = 256 < 300

N+M=11or2 12 = 2048>2000

(3,8), (4,7), (5,6), (6,5) are the (M,N) values which satisfy the problem constraints. Note that the
(M,N) pairs (7,4), (8,3), (9,2), (10,1), (11,0) also satisfy the constraints. However, the practical
constraints of the buffer depths and limiting the total amount of hardware make any of these
solutions impractical. In order to minimize the hardware, the values of (M,N) should be taken as
(3,8) which requires eight FIFO bins and an eight bit shift on the NTOA words (256 Ps/bin).

Load CAM Processor

The function of the LIST Forming Processor is to form an ordered list of those emitters whose
pulses are next expected to arrive. The Load CAM Processor then loads these emitters into the CAM
shortly before their expected arrivals. Therefore, the list loading and the CAM loading are performed
by the LIST Forming Processor and Load CAM Processor respectively as shown in Fig. 3. These two
functions could possibly be performed by a single physical processor.

There are two sources for the data to be loaded into the LIST. The first source is the Associa-
tive Processor Emitter pulses which are matched in the CAM and are expected to arrive again
delayed by a time equal to the emitter's PRI (Fig. 4). The associative processor has a PRI memory
which stores the PRI's corresponding to all emitters which reside in the CAM. When a CAM match
occurs, the expected next time of arrival (NTOA) of the matched emitter is computed (by adding
its PRI to its TOA), and the emitter's data are loaded into the ordered LIST. The method of
ordering the LIST when loading it, and the order of loading the CAM from the LIST are discussed
later in this section.

The second source for the data to be loaded into the LIST is the microprocessor array. Emitters
which are identified by the microprocessor array are loaded in the LIST Buffer (see Fig. 2). The
Load CAM processor then reads the emitter parameters from the buffer and loads them into the
LIST.

The load CAM processor loads the CAM from the LIST at those times when the CAM is not
busy processing the data coming from the Receiver. A real-time clock is used to select the FIFO
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Fig. 4 - Loading the LIST after a match in the CAM NEXTTOA -

LOGIC
(DECODER) 

L LIST.- 

2M BINS

buffer from which data are loaded into the CAM. A time slot, using the same values of M and N
derived earlier is generated from the real-time clock and used to determine the module number
(a FIFO buffer) from which data are loaded into the CAM.

This procedure of loading the CAM attempts to make efficient use of the limited CAM space
by only loading those emitters into the CAM which the system expects to see during the next
period of time. Emitters are loaded into the CAM during the same time slot as their next expected
arrival time. The size of this time slot is determined by the parameter N (the number of bits shifted).
Therefore, the loading of an emitter into the CAM precedes its actual arrival by an amount of time
less than or equal to the size of the time slot minus the delay in the LIST.

When loading the CAM from the LIST, an indentical window is applied on the real-time
clock to determine the Bin for loading as was used on the NTOA word to determine the Bin for
loading the LIST. Once the Bin is determined, data are unloaded sequentially from top to bottom
(i.e., FIFO).

PERFORMANCE MEASURES

There are different measures which could be used to evaluate the performance of the signal
sorter. An important measure is the delay an emitter encounters from the time its first pulse is
received until it is completely identified and its parameters stored in the system file. A major
objective of the system is to minimize this delay which allows it to handle a reasonably dense
environment in real time. When a relatively small number of microprocessors are used in the proc-
essor array, the identification and filing functions cannot be realized without some filtering of the
incoming data by the Associative Processor. Therefore the amount of filtering done by the Associa-
tive Processor has a great effect on the performance of the system. Thus, the ratio of the number
of matched pulses to the number of unmatched pulses in the Associative Processor (CAM) represents
an indirect measure of the system performance. Since the CAM unmatched data are passed into the
microprocessor array for identification, the maximum size or number of pulses in the buffer in
front of this array of microprocessors is also a reasonable performance measure. A larger number of
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the emitters waiting in this buffer would result in a longer delay in completing their processing.
Therefore, performance measures may be chosen from the following:

1. The ratio of CAM MATCH/NO MATCH.

2. The maximum number of emitters waiting in the FIFO buffer of the array processors.

3. The maximum delay in processing an emitter.

4. The maximum number of emitters in any Bin of the LIST. This shows a lower bound for the
required CAM size.

5. The maximum number of emitters waiting in the receiver output buffer (data to be processed
by the Associative Processor). This shows whether the Associative Processing speed is adequate to
process the incoming data rate.

Since the above performance measures are not independent, a subset is sufficient to measure the
system performance. The simulation model measures all the above parameters, but only the size of
the Processor Array buffer and the CAM Match/No Match ratio are shown in the tables of this
report. Performance measures other than those listed above may also exist.

ARCHITECTURE TUNING

The exact values of emitter parameters to be encountered by the signal sorter are not always
known. The environment simulation was based on generating emitter parameters which are random
with a uniform distribution but bounded by some arbitrary upper and lower limits. These limits
were set to represent previously observed values. Having a fixed system architecture for the signal
sorter would limit its effectiveness to a limited range of certain emitter parameters, such as DOA
and PRI distribution. In order to expand the range of environment data for which the sorter can
operate properly, dynamic adjustments in the sorter architecture are necessary. Some particular
parameters that affect the performance of the signal sorter considerably are the environment
density (i.e., the number of emitters seen at the same time), the total number of pulses per second,
the distribution of the PRIs, and the geometry of the emitters relative to the sorter (i.e., emitters
distribution among the DOA cells). An exact knowledge of the values of these parameters would
make decisions regarding hardware and software design much easier. Variations in the emitter
parameters, incomplete data due to errors or corrupted data, or lack of information about the
characteristics of new emitters in the environment could degrade the overall performance of a
static (fixed) architecture of the signal sorter system. This assertion has been tested and shown to be
true using the simulation models. A more flexible design, in which the hardware can be reconfigured
and/or the software modified based on the characteristics of the environment data, would yield
superior performance over a wider range of input data characteristics.

As stated earlier, the range of the emitter's PRI has a considerable effect on the structure of
the LIST which is used for loading the CAM with the proper data of the predicted next arrival
pulses. Keeping the total size of the LIST fixed, the structure of the LIST in terms of the number of
modules and the size of each module could be based on the minimum and the maximum PRI.
(See the section on implementation.)
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Another example of an environment parameter that influences system design is the distribu-
tion of emitters in the DOA cells. A flexible and more effective design should allow the micro-
processor array architecture to adapt itself to the above distribution. This self adjustment could be
achieved by allocating more processing power to the more heavily populated DOA cells of the
environment.

The adjustment of the architecture based on actual values of environment data could result in
considerable improvement of the system performance. These flexibilities in the signal sorter design
are referred to as architecture tuning.

This portion of the research work is associated with the architecture tuning of the Associative
Processor section but the primary portion affected is the LIST section of the signal sorter. A de-
tailed analysis and simulation of the effect of the distribution of PRI's on the configuration of the
LIST is considered. First, the configuration of the LIST in terms of the number of modules and the
module size are analyzed in relation to the PRI range and distribution. Other architectural concepts
considered are the loading and unloading strategy of these LIST buffers as last-in-first-out (LIFO)
or first-in-first-out (FIFO). A trade-off between using FIFO buffers and random access memory
(RAM) modules for constructing the LIST is also analyzed.

FIFO buffers are memories which have built-in pointers to the next location for loading and
updating automatically with every load or unload. Unloading is always done from the bottom of the
buffer (first-in). The load/unload strategy is fixed by the buffer structure which is first-in-first-out.
A major drawback of using FIFO buffers is the number of integrated circuit packages required
(chip-count). When large numbers of LIST modules are required, a large number of FIFO integrated
chips are required, since FIFO storage densities are much lower than conventional RAM memories.

Using a RAM memory to implement the LIST reduces the chip-count. One large integrated
circuit (IC) memory could be divided into several blocks corresponding to the modules needed for
the LIST. A number of external pointers are needed to manage the loading and unloading of these
LIST modules. A FIFO strategy would require two pointers per module, while a LIFO policy would
require one pointer per module.

Analysis and computer simulation of the LIST architecture and load/unload policies stated
above, are presented in the following sections.

LIST Reconfiguration

The LIST is used as a buffer from which emitters are loaded into the CAM. It is an ordered
list according to the next expected arrival times of the emitters in the environment. As shown in the
section on the LIST Forming Processor, the ordering, which is based on the next time of arrival
(NTOA), is not precise, but instead is based on a time slot or window, with all the emitters whose
NTOA falls within the same slot loaded into the same module of the LIST.

It is also shown that the time slot selection was based on the range of emitters PRI distribu-
tion. Assuming a uniform distribution of the PRI's with some values for minimum PRI and max-
imum PRI, the time window depends on both the minimum and the maximum PRI.

The time window is selected as a group of bits in the middle of the NTOA word for loading
the LIST. Similar bits from the real-time clock are used for loading the CAM from the LIST.
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Two operations have to be performed on the calculated time word to extract the loading time
window. First the N right most bits are dropped (shifted right). The next M bits constitute the time
window, and the left most bits are ignored. The extracted M bits represent the module number
(BIN #) associated with the emitters either for loading into the LIST or the CAM. Both N and M
should be chosen based on the maximum and the minimum value of the PRI's. As an example,
assume a sixteen bit time word with the binary value of 0011001011010110 and N = 7, M = 4.
To compute the bin number the least significant N bits are dropped leaving 001100101. The next
M bits give the bin number which is 0101. Therefore the bin for this time word is BIN 5.

The LSB of the real-time clock, the TOAs, and the PRIs has a value of 1 ius in the current
model. The selection of the values of M and N should satisfy these conditions:

(1) 2 N < Min. PRI (in ps)

(2) 2N+M > Max. PRI (in gs)

The first condition is necessary to provide a good distribution of the emitters over the number
of BINS in the LIST. It means that the time slot will be set such that the same emitter will not be
loaded twice in the same time slot Bin. The second condition is also necessary in order to cover all
the range of NTOA including the emitters with the maximum PRI. That is, the time it takes for the
system to cycle through all the bins should be greater than the maximum PRI.

Since the resulting M corresponds to the BIN number (or a module of the LIST) the upper
bound on M should be kept to the minimum value which satisfies conditions (1) and (2). As an
example consider the following system parameters:

Min. PRI = 200 ps, Max. PRI = 3000 ps.

The number of BINS can only vary between eight and 128 i.e., (M = 3 to 7). This
would be a system hardware constraint.

Application of the conditions (1) and (2) results in the following (N and M can take on only integer
values):

(1) 2N < 200, i.e., No< 7

(2) 2 N+M > 3000, i.e., N + M > 12

The (N,M) pairs that satisfy the above conditions with the minimum values of M (using the equality
in (2)) are (7,5), (6,6), (5,7). One of the above pairs should result in the best performance.

The above analysis determines the number of modules (M) required in the LIST and the posi-
tion of the time window for determining the module number of the LIST for loading an emitter
with a given next arrival time (NTOA). Assuming a fixed size for the LIST, in terms of total capacity
in words, the number of words per module will vary with the value of M. As an example, if the
system has a total of 64 basic FIFO units with eight words per unit, then the module size would
vary between eight and 32 words as the number of modules vary between 64 and 16 respectively.
This means the LIST could be configured as either 64 modules (bins) of eight words each, 32
modules of 16 words each, or 16 modules of 32 words each. These different configurations could be
achieved with the same hardware by changing the interconnection scheme.

10
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The total number of words in the LIST should be a function of the environment density,
which in turn is a function of both the expected maximum number of emitters and the PRI
distribution. Given a fixed size of the LIST, its configuration in terms of the number of modules
should be a function of the PRI range, as the PRI range varies, the LIST should be reconfigured
based on the above analysis.

Any LIST configuration has to satisfy both conditions (1) and (2). Condition (1) determines
the upper limit on the bits to be shifted (N). Condition (2) determines the lower limit on (N + M).
Hence the combination leaves the upper limit on M as infinite. Hardware costs and implementation
factors should restrict the upper limit on M. Also, since larger values of M could result in a higher
implementation cost, the inequality in condition (2) could be replaced by an equality. With these
added restrictions, the conditions for the LIST configuration can be restated as follows:

(i) M • Mmax (Log2 of the maximum number of modules allowed),

(ii) N < [Log2 PRILI,

(iii) N + M = [Log2 PRIH ] + 1 if Log2 PRIH * integer

= [Log 2 PRIHI if Log2 PRIH = integer,

where [ ] refers to the integer value of the quantity inside the brackets.

Let us assume the maximum number of modules is (128), therefore Mmax = 7. Table 1 illus-
trates the result of applying conditions (ii), (iii) to several arbitrary PRI ranges (PRIH, PRIL). The
list configuration which yields the best performance corresponds to an (M,N) pair from those given
in the table.

Simulation runs for various values of M, N, PRIL and PRIH are shown in Table 2. Points other
than those satisfying Eqs. (i), (ii), (iii) are also tested. In each case the optimal operating point is
found to be from the set determined by the equations.

Table 1- LIST Configuration as a Function of PRI H9 PRIL

PRIH, PRIL [ N + M MMAX NMAX M,N (possible values)

2000,300 11 7 8 (4,7), (5,6), (6,5), (7,4)
2048,128 12 7 7 (6,6), (7,5)
3000,128 12 7 7 (6,6), (7,5)
4000,640 12 7 9 (4,8), (5,7), (6,6), (7,5)
4000,896 12 7 9 (4,8), (5,7), (6,6), (7,5)
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Table 2 - LIST Configuration as a Function of PRI Distribution (Continued)
(A/B = # NO MATCH IN CAM/ARRAY BUFFER SIZE)

Mini- Maximum PRI (PRIH)
mum
pPRIL) 3072 4000 4096

4,8 5,7 6,6 7,5 7,6 6,6 6,7 5,7 4,9 5,8 6,7 7,6 4,8 5,7 6,6 7,5
128

336/6 37/3 14/3 41/3 17/4 17/4 17/5 15/4 X 62/4 13/4 17/4 15/4 18/4 57/4

4,8 -5,7 6,6 7,5 5,7 6,7 6,6 5,8 6,7 7,6 4,8 5,7 6,6
256

84/4 19/4 21/4 81/5 12/5 12/5 11/5 X 33/6 12/6 22/6 47/6 17/6 23/6 X

4,8 5,7 6,6 7,5 6,7 5,7 5,8 6,7 7,6 4,8 5,7 6,6 7,5
384

34/3 13/3 14/3 24/4 12/5 12/5 X 12/4 8/4 27/4 29/4 10/4 16/4 88/4

4,8 5,7 6,6 7,5 6,7 5,7 4,9 5,8 6,7 7,6 4,8 5,7 6,6
512

40/4 16/4 20/4 100/4 10/4 10/4 204/4 14/4 10/4 19/4 32/4 12/4 18/4 X

4,8 5,7 6,6 7,5 5,8 6,6 6,7 5,7 4,9 5,8 6,7 7,6 4,8 5,7 6,6 7,5
640

19/3 12/3 16/3 79/3 11/4 14/4 9/4 9/4 110/3 15/3 10/3 25/3 34/3 11/3 25/3 114/3

4,8 5,7 6,6 4,8 6,6 6,7 5,7
768

12/3 8/3 25/3 18/3 15/3 11/3 11/3 X 13/3 8/3 21/3 32/3 8/3 21/3 X

4,8 5,7 6,6 4,8 5,7 6,6
896

18/3 9/3 24/3 16/3 13/3 31/3 X 13/4 8/4 X 34/4 13/4 X X

6,7 5,7 6,6 4,9 5,8 6,7 7,6 4,8 5,7 6,6
1024 _ _ _ _ _ _ _ _ _ _ _ _ _ _

7/4 7/4 21/4 21/4 8/4 10/4 X X 11/4 X X

Table continues.
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Table 2 - LIST Configuration as a Function of PRI Distribution (Concluded)
(A/B = # NO MATCH IN CAM/ARRAY BUFFER SIZE)

Mini- Maximum PRI (PRIH)
mum
PRI - 5118 7168 8000

4,9 5,8 6,7 8,6 4,9 5,8 6,7 8,6 5,8 6,7 7,6
128

X 20/3 7/3 9/3 X 14/4 12/4 15/4 11/3 9/3 17/3

4,9 5,8 6,7 8,6 5,8 6,7 8,6
256

364/4 12/4 10/4 15/4 X 8/3 9/3 18/3 X X X

5,8 6,7 8,6 5,8 6,7 8,6
384

X 14/4 8/4 24/4 X 6/3 7/3 22/6 X X X

5,8 6,7 8,6 5,8 6,7 8,6
512 __

X 10/4 8/4 22/4 X 7/4 7/4 21/4 X X X

5,8 6,7 8,6 5,8 6,7
640 __

41/5 11/4 10/4 21/5 X 6/3 6/4 X X X X

5,8 6,7 5,8 5,9 4,9
768

-X 7/4 7/4 X X 7/3 7/3 X 4/5 8/5 493/6

4,7 5,8 6,7 4,9 5,8 6,7
896

12/5 7/5 7/5 X 8/4 8/4 10/4 X X X X

4,9 5,8 6,7 4,9 5,8 6,7 5,71024 6,5 76 ,4X
27/5 6,5 7/5 X 6/3 6,3 8/3 431/5 X X X
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z
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The simulation runs which were used to obtain the results in the table held the following
environment characteristics constant:

Number of emitters = 100

The maximum on time separation = 0.05 s

(This is the maximum length of time between the first pulse seen from each emitter in
the scenario.)

Simulation run time = 0.1 s

The minimum and the maximum PRIs shown in the table are in microseconds. The entries
in the table are the counts of NO MATCH COUNT/ARRAY PROCESSOR INPUT BUFFER SIZE
for each run. The definition of these performance measures was in the previous section. Lower
values indicate better performance. The top of each entry is the pair (M,N) used for the LIST
configuration. Blank entries represent configurations which were not tried in this simulation. These
configurations were not tried because adjacent points indicate that they would result in poorer
performance.

Table 3 is a summary of the configurations giving the best results for the (PRIH, PRIL) pairs
tested. A reasonable number of PRI pairs were tested. A value in the table applies for the range of
PRI's starting with the row or column header and extending to the next higher PRI value. For
example, the optimal operating point (6,6) shown for the (2048,256) PRI pair is valid for PRIH
from 2048 up to 2500 and PRIL from 256 to 384.

The results in Table 3 are plotted in Fig. 5 to illustrate the optimal configuration for a given
range of PRI pairs. It is seen from the figure that the three constraints (i), (ii), (iii) are satisfied.
The value of M chosen was the minimum value which would satisfy (iii).

Table 3 - Summary of Best LIST Configuration vs PRI Distribution
(M,N = Log2 (number of Bins, relative Bin size)

Minimum Maximum PRI (PRIH)

(PRIL) 2000 |_2048 |_2500 3072 | 4000 | 4096 J 5118 7168 |8000

128 5,6 6,6 6,6 6,6 6,6 6,7 6,7 6,7 6,7
256 5,6 6,6 6,6 5,7 6,7 6,7 6,7 5,8 5,8
384 5,6 6,6 6,6 5,7 5,7 6,7 6,7 5,8 5,8
512 5,6 6,6 6,6 5,7 5,7 6,7 6,7 5,8 5,8
640 5,6 5,7 5,7 5,7 5,7 6,7 6,7 5,8 5,8
768 5,6 5,7 5,7 5,7 5,7 6,7 5,8 5,8 5,8
896 5,7 5,7 5,7 5,7 5,7 6,7 5,8 4,9 4,9

1024 5,7 5,7 5,7 5,7 5,7 5,8 5,8 4,9 4,9
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2000 2048

256

PAIL
(ps)

640.

768-

896_

1000-

3072
PRIH (1s)

4096 5118 6144 7168 8000

Fig. 5 - (M,N) LIST configuration vs PRI distribution

Implementation

The LIST consists of a number of LSI integrated circuit modules with changeable logical inter-
connection between them. Even though the hardware connections between the different circuits
are fixed, the logical connections are under microprogram control. The logical connection and
hence the configuration of the LIST into a certain number of independent first-in-first-out buffers
is determined by the software executed by the system itself during actual operation.

The initial values of M,N are chosen as some "nice" values as determined by simulation.
Reconfiguration of the LIST is accomplished by monitoring the maximum and minimum PRIs
of the current emitters in the environment scenario. The microprocessor array keeps track of the
PRIs and whenever a sizable change in either the PRIH or PRIL occurs, it outputs new values to
the LIST control hardware which would result in reconfiguration of the LIST. The necessary
amount of change in PRIH or PRIL to initiate a reconfiguration was left as a user input in the
simulation. In the runs described in this report, all changes in PRIH or PRIL of any size caused
reconfiguration. This is the worst case condition in terms of processing overhead. Any actual imple-
mentation would probably use some other threshold.

Implementation of the LIST using two different types of storage modules is considered in this
section. In the first implementation, hardware "FIFO" circuits are used, while in the second imple-
mentation, the LIST is constructed by using a RAM memory with a set of pointers.

FIFO Buffers Implementation

In this section a LIST architecture using FIFO buffers is presented. The LIST consists of a
fixed number (K) of "FIFO" integrated circuits (ICs) of a fixed size and configuration logic. The
array processor passes to the LIST configuration logic the maximum and the minimum PRIs. The
LIST configuration logic performs the following functions:

16
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(1) It maps the PRI pair (PRIH, PRIL) into the (M,N) pair based on a presorted table. The
contents of the table are derived based on the simulation results shown earlier. Figure 6 shows
the logic for the mapping of (PRIH, PRIL) into a (M,N) pair.

In the example shown in Fig. 6, it is assumed that the shifts are limited between 6 and 9
(N = 6 to 9). The number of modules is limited between 16 and 64 (i.e., M = 4,5 or 6). These
values are those resulting from the simulation runs presented earlier and hence taken as an ex-
ample for the hardware design. Considerations of the limits on M and N allow the optimization of
the size of the mapping ROM table in terms of its word length. In this example, the ROM word
length is limited to 4 bits. Two bits are used to encode the value M and the other two encode the
value of N.

(2) Given an (M,N) pair generated by the mapping ROM, the LIST architecture is recon-
figured accordingly. The configuration hardware generates the signals for the interconnection of
the FIFO ICs such that they constitute 2M modules with each module consisting of one or more
ICs. Whenever a module contains more than one IC a logical path is created between the ICs within
the module to increase the depth of that module. That is, if the number of modules is halved,
the number of words per module is doubled.

As an example let us consider a LIST consisting of (16) FIFO modules and a PRI distribution
that requires the LIST architecture to vary between (16) modules and (8) modules. Figure 7 shows
the LIST with the interconnection logic. Note that when the LIST is configured as eight modules,
the output of the even bins (e.g., BINO) is routed to the input of the next bin to double the size
of the modules.

(3) The (M,N) pair is also used by the LIST configuration logic to provide for the proper
decoding of the emitters' NTOA and the real-time clock in order to load and unload the LIST
accordingly. This configuration is achieved by ignoring the low order N bits of the time fields,
then decoding the adjacent higher order M bits into a module number. The module number gen-
erated determines the module for the load/unload of data.

To further illustrate the LIST configuration hardware, let us consider the environment used to
generate the results in Table 2. This environment has a PRIH of 8 ms. and a PRIL of 128 us. For

115 PRyH 01 15 PRIL 

3 9
H12 ,1 1,10

LISTPR
INTER MAPPING

CONNECTION ROM
LOGIC S

82
RR R2 S. S2

00 --M= 6 (64 MODULES) 0 0 -N= 6
0 1 -M=5 0 0 -N=7
1 0 -M=4 1 0 -N=8

1 1 -N=9

Fig. 6 - PRI's mapping ROM
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CONFIGURATION FLAG:
X=1 8 MODULES
X=1 16 MODULES

Fig. 7 - LIST interconnection
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this particular environment, the minimum number of shifts (N) is equal to six (6). Also, the maxi-
mum value of (N + M) is equal to thirteen (13). Therefore given an emitter's NTOA, the higher
order (3) bits and the lower order (6) bits should be ignored. The middle (7) bits are then mapped
into the module number into which the emitter's data should be loaded. Figure 8 shows how the
NTOA mapping could be done. This example illustrates that if the bounds of PRIH and PRIL are
known, the size of the NTOA mapping ROM can be reduced. Similar procedure and hardware
applies to mapping the real time clock for loading the CAM from the LIST.

Using a RAM for the LIST

The reconfiguration using FIFO buffers to form the LIST requires a few microseconds to tune
the system to the new environment (different PRI's range). Its drawback is the large amount of
hardware required to construct the LIST. Current technologies using FIFO buffers require a
relatively large number of IC packages to implement.

An alternative design for constructing the LIST is to use a RAM memory to replace the FIFO
buffers. In order to provide a modular buffer architecture with the RAM, added overhead is intro-
duced associated with keeping and updating pointers to the sections of the RAM which simulate the
relatively large number of logically independent buffer modules. Some of this added overhead
occurs with each data word loaded into the RAM LIST or taken out of the LIST and loaded into
the CAM.

In order to simulate the FIFO buffer modules by a RAM, two pointers are needed with each
RAM section representing a module. One pointer, the LIST load pointer, keeps track of the top of
the stack (last-in), while the LIST unload pointer points to the bottom of the stack (first-in). The
load pointer gets incremented with each load into the RAM section (LIST module). The unload
pointer gets incremented with each load from the LIST module to the CAM.

The total number of pointers to the LIST is thus twice the number of modules in the RAM
LIST. Hence the number of pointers could be large for a system configuration that requires a
relatively large number of buffer modules. A practical implementation then requires that memory
locations within the RAM be used as pointers rather than using separate register pointers outside
the RAM memory.

Another overhead caused by the RAM implementation is that which is associated with the
reconfiguration process itself. As described earlier, whenever a significant change in the PRIH,
and/or PRIL occurs, the system is tuned to the changed environment by selecting the number of
buffer modules and the amount of shift which results in the optimal time window configuration.

NO. OF Rj
MODULES 1R2-0

NTOA
NO. OF BITS S1 MAPPING BIN #
FOR SHIFT | S2ROM 6 bits

NTOA
7 bits BUFFER

INTERCONNECTION
CONTROL

Fig. 8 - Next TOA (NTOA) mapping ROMs
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In practice, PRIH and PRIL should not change frequently within a given scenario, and hence
the architecture tuning is only needed to tune the system to one of a small number of different
configurations. Therefore, the overhead associated with tuning the LIST configuration to the
environment should occur at widely spaced times of significant change in the emitter environment
(system turn-on, for example) and not on a continuous basis during the entire engagement.

Therefore, the aim of architecture tuning of the LIST in this case is simply to configure the
LIST, based on PRIH and PRIL as part of the system initialization. The above statement assumes that
reasonably accurate values of PRIH and PRIL are known in advance. When PRIL and PRIH are not
known in advance, the system could be initially configured based on some practical predicted values
of known PRIs and the system could tune itself later based on the PRI data collected by the system.

The procedure for reconfiguration then requires that the array processors keep track of the
PRIH and PRIL values of the emitters identified and the number of emitters identified. After a
reasonable number of emitters is identified, the PRIH and PRIL are considered to be valid for
LIST configuration. The number to use would have to be experimentally determined. In the results
reported here, the reconfiguration was done after each new emitter in the scenario was identified.
This method gives the worst case in terms of processing time required. The array processors con-
tinue to keep track of the PRIH and PRIL. Reconfiguration of the LIST could be done again, when
a new value of PRIH or PRIL is different from the previous values by some threshold value.

The LIST reconfiguration is then initiated by an interrupt from the array processors to the
Load CAM processor. Upon receiving an interrupt, the Load CAM processor reads the new con-
figuration status (number of modules in the LIST) and then adjusts the buffer pointers accordingly.

When the LIST is implemented by a number of FIFO integrated circuit modules only a simple
controller is needed to perform the LIST management (LIST Forming and Load CAM) tasks. For a
RAM LIST implementation, it is more desirable to use a microprocessor with internal data memory
for the management of the LIST. The microprocessor capabilities are needed to provide for the
address computations needed to access the LIST. The processor internal data memory is used to
keep the pointers to the next available data word in the various sections of the LIST. Figure 9
illustrates the RAM LIST addressing hardware for loading an emitter data into the LIST and/or
loading data from the LIST into the CAM. Part of the hardware is used to map the (PRIH, PRIL)
pair into the configuration (i.e., the number of modules and the amount of shift), while the other
part maps the NTOA/Real-Time clock into the module number for LIST loading/unloading.

SIMULATION RESULTS AND PERFORMANCE COMPARISON

Several implementations of the LIST have been simulated. Each implementation has the
capability of LIST reconfiguration based on the PRIs range and distribution. A summary of the
simulation results for these various implementations is presented in this section.

The environment characteristics in terms of number of emitters and PRI distribution were
kept the same for most of the simulation runs which were used to evaluate the various LIST archi-
tectures. Also, the processing times for the Associative and Array processors were kept fixed. Hence,
in all the simulation results presented in this section, the environment density (number of emitters)
and the processing speeds were fixed to the same values unless otherwise noted.

The performance measures which are used from the simulation runs are the number of NO
CAM MATCH, and the size of the buffer in front of the Array processors. These criteria are the
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Fig. 9 - RAM LIST addressing

same performance measures as were used in Table 2. They are presented in the various tables as a
pair of numbers in the above order, separated by a comma. Lower values of these parameters indicate
better performance.

FIFO Implementation

In this implementation, physically separate FIFO buffers using FIFO integrated circuit
modules are assumed to form the LIST. This architecture has the least amount of processing over-
head in loading and unloading the LIST. The entire reconfiguration process is done in hardware,
which eliminates any software overhead associated with reconfiguration. The first-in-first-out
characteristics of the individual modules eliminates any overhead associated with the updating of
pointers for proper loading and unloading of data into and out of the LIST respectively.

Table 4 shows the performance of static tuning versus that of dynamic tuning. For static
tuning, the LIST configuration was fixed during the entire simulation run. That is the number of
modules in the LIST, and the location of the time window were set in advance and remained fixed
during the run. The performance measures shown in Table 4 for static tuning indicate clearly, the
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Table 4 - Dynamic vs Static Tuning

Configuration Static Tuning j Dynamic Tuning

4,9 28,3t 21,3
5,8 8,3 19,3
6,7 8,3 16,3
6,6 407,5 21,3
5,7 446,5 21,3

*M,N -+ NUMBER OF MODULES, TIME SLICE OF EACH
MODULE

t28,3 - 28 CAM NO MATCHES, 3 WORDS MAX BUFFER
SIZE

need for determining the configuration of the LIST based on the PRI distribution. For the emitter
environment used, the performance of the static architecture varied widely for different configura-
tions. But by using a dynamically tuned architecture, a consistant performance was achieved.
Arbitrary selection of a static configuration could result in degraded performance. For example the
configurations (N = 6, M = 6 or N = 5, M = 7) would not be good choices for this particular simula-
tion environment as shown in the table.

In the dynamic tuning runs, the LIST was reconfigured dynamically based on the PRIH and
PRIL encountered in the environment. The configuration values (N,M) in this case were used for
initial configuration of the LIST. The LIST was then reconfigured based on the PRIH and PRIL
encountered by the signal sorter. In the simulation model, the PRIH and PRIL are channeled into
the LIST configuration directly through the hardware. The configuration hardware automatically
allows the coupling or decoupling of modules. A change in the configuration from 32 buffer
modules into 16 modules would result in ordering the entire data that are contained in the 32
modules into just the 16 modules with no loss of data. This is easy to implement due to the implicit
pointer characteristics of the FIFO buffer circuit modules. The data in the BINQ would be com-
bined automatically, with no added overhead, with the data in BIN 1 to form the new BINQ (see
Fig. 7).

In a RAM LIST implementation, which will be discussed in the next section, data merging
after reconfiguration would be time consuming because the pointers are not implicit. It could be
more efficient just to ignore loading the data in the higher numbered modules into the CAM. For
example, when reconfiguring from 16 to eight modules, just ignore the data currently in modules
nine to 16. Table 5 shows the simulation results for FIFO LIST configuration which ignored the
data in the higher modules when the configuration changed into a smaller number of modules.
This case is called Dynamic Tuning (2) in the table. These results are included for comparison pur-
poses only since there is no advantage of such an implementation using the FIFO ICs. As shown
in the table, the performance of such an implementation is not as good as the previous case where
no data in the LIST is lost, although the dynamic tuning again shows a consistent performance as
compared to the performance of the various static configurations.

RAM Implementation

Previous results show that the FIFO buffer implementation requires a relatively large
number of FIFO ICs. An alternative implementation of the LIST is to use RAM buffers for the
LIST. A RAM buffer with a total capacity equal to that of the entire FIFO implementation would
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Table 5 - Static vs Two Cases of Dynamic Tuning

Configuration [ Static Dynamic Dynamic
M,N [_Tuning Tuning (1) Tuning (2)

4,9 28,3 21,3 51j8
5,8 8,3 19,3 51,8
6,7 8,3 16,3 51,8
6,6 407,5 21,3 51,8
5,7 446,5 21,3 51,8

require a much smaller number of RAM integrated circuit packages. Thus this implementation
reduces the total number of system components (ICs) considerably. The basic drawback is the
need for, and the overhead associated with a large number of explicit pointers.

The RAM has to be divided into a number of sections corresponding to the number of indepen-
dent modules in the LIST. Two implementations are considered for the RAM LIST. In one imple-
mentation, each section of the RAM is organized as a FIFO buffer. That is, the data are read out
of each section of the memory in the same order as they were written. In this case, two pointers are
needed for each section, one to point to the top of the stack, while the other keeps track of the
location of the bottom of the stack. These pointers are referred to as the Load pointer and the
Unload pointer respectively. When an element is added to the stack the Load pointer (bottom)
is incremented to indicate the next available location. Data are moved into the CAM from the top
of the stack. The Unload (top) pointer is also incremented with each unload operation. A stack
is non-empty as long as the value of the bottom pointer is larger than the value of the top pointer.
When the two pointers are equal the stack is empty.

In the second RAM implementation, each section of the RAM is organized as a last-in-first-out
(LIFO) stack. This organization would reduce the number of pointers needed to one for each
module of the LIST. This implementation would reverse the order of loading and unloading of the
emitters within the same time slot. Therefore, this scheme presents a greater probability of loading
data into the CAM after the pulse has arrived, hence wasting valuable space in the small CAM and
causing extra NO MATCH conditions with input data which had already been identified. Each NO
MATCH in the CAM increases the processing load of the microprocessor array, and thus decreases
system throughput.

Associated with both RAM implementations is additional processing time overhead. The over-
head has two distinct components. First, with each reconfiguration of the LIST, the Load CAM
processor must know the maximum number of modules in the LIST. This information is needed to
update the pointers. For example, a change in the configuration from 32 to 16 modules requires
the adjustment of the pointers of the 16 modules which are no longer active to indicate that they
are empty. The current data in these modules are ignored and not loaded into the CAM. To avoid
this loss of data would require joining adjacent modules (compaction) to form 16 modules from the
previous 32. This process would add an even greater amount of overhead which would greatly
affect the real-time operation of the system. The simulation results in this section represent only
cases where no compaction was made. The compaction of the LIST section has been simulated and
the results did confirm that LIST compaction would degrade system performance.

The second component of the added overhead occurs with every load into and every unload
from the LIST. Since there are one or two pointers associated with each memory section, the Load
CAM processor must first identify the section in order to select the appropriate pointer(s). This
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action is accomplished by reading the module number for loading or unloading before the appro-
priate pointer is selected and used to address the LIST.

The processing overhead, discussed above, is taken into account in the simulation model by
increasing the Load CAM processing time associated with each load into the LIST or load into the
CAM. This increase is represented by a single constant.

Table 6 shows a summary of the simulation results for various implementations including the
two RAM LIST organizations. Definitions of the difference in these configurations used in the
simulation to obtain these results are given in Fig. 10. The environment density and the fixed proc-
essing times, in the various components of the signal sorter, were held constant for all the simula-
tion runs except when otherwise noted. The only variations were in the LIST organization and the
Load CAM processing time.

Two important aspects of the RAM LIST implementation deserve additional considerations.
One aspect is the effect of the additional overhead on the overall signal sorter performance. To
attempt to learn the impact of the overhead, the Load CAM processing time was varied to obtain
the results in Table 6. Simulation results using Load CAM processing times of 1 ,is and 2,us are
shown. Results when using a 3 us processing time are shown later. The second aspect is the
ADVANCE LOAD TIME parameter. Thus far, we have considered the same time window for both
loading and unloading the LIST. That is, emitters are loaded from the LIST to the CAM during the
time slot during which their next pulse is expected to arrive. The simulation program allows for the
addition of a bias to the real-time clock which provides an advance loading of data into the CAM.
That is, the Load CAM processor tries to load emitter data into the CAM ahead of the time slot
which contains its expected next arrival time. The advance loading might be of particular use in the
case of the LIFO RAM implementation. Intuitively, the performance of the LIFO RAM should
improve when advance loading is allowed. It is also clear that the total effect of an advance loading
is also dependent on the CAM Load processing time. For example, if the CAM Load processing time
is small, then advance loading would have a lesser effect on performance as compared to its effect
when the CAM Load processing time is larger.

In order to verify the effect of the above two aspects (the CAM Load processing time and the
ADVANCE LOAD TIME), simulation runs for various values of these parameters were performed.

Table 7 shows the effect of variation of the ADVANCE LOAD TIME on the performance of
the FIFO LIST. Since the FIFO LIST does not have any overhead for loading or unloading

Table 6 - Summary of Simulation Results

Static Dynamic Tuning
Configuration Tuning Load Time 1 Ms Load Time = 2 ,s

M,N Load Time I ,usI 
EVML TimeiIsEVSO I EVS3 EVS1 EVS1 EVS3

4,9 28,3 22,3 51,8 51,8 61,8 124,8 55,8
5,8 8,3 19,3 51,8 51,8 61,8 124,8 55,8
6,7 8,3 16,3 51,8 51,8 61,8 124,8 55,8
6,6 407,5 21,3 51,8 51,8 61,8 124,8 55,8
5,7 446,5 21,3 51,8 51,8 61,8 124,8 55,8

See Fig. 10 for description of program versions.
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Program Name List Implementation

EVS7 FIFO LIST, Fixed Window (Static Tuning)

EVS2 FIFO LIST, Dynamic Tuning C:

EVSO The same as EVS2, except data in upper modules are lost when configuration
changes to lower number of modules

EVS1 LIFO RAM LIST

EVS3 FIFO RAM LIST

Fig. 10 - Definition of simulation programs

Table 7 - Effect of Advance Load Time on FIFO LIST

Load Time Advance Load Time mi ps

0 16 32 64 128

1 54,8 52,8 53,8 57,8 75,8

the LOAD TIME is fixed to 1 us. For this particular environment and LIST configuration, increasing
the ADVANCE LOAD TIME decreased performance.

Table 8 shows the effect of the LOAD TIME and the ADVANCE LOAD TIME on the perfor-
mance of the FIFO RAM LIST. The same simulation parameters were repeated using the LIFO RAM
LIST configuration and the results are shown in Table 9.

Comparison of Results

Referring to Table 6, the fixed configuration of the LIST has a better performance than the
dynamic reconfiguration in those cases when the appropriate values of N,M are used. That is, the
PRIH and PRIL values are known in advance. In order to achieve superior performance with a fixed
configuration, an a priori knowledge of PRIH and PRIL is necessary and a static environment is
needed.

Dynamic reconfiguration using FIFO LIST (EVS0) has the same performance as that using
FIFO RAM LIST (EVS3) assuming no LIST compaction is performed. FIFO LIST (EVS2) per-
forms better than FIFO RAM (EVS3) when FIFO compaction is considered. The compaction is an
intrinsic property of the FIFO LIST which does not cost any processing time overhead. Compac-
tion of RAM LIST is not implemented because of the amount of extra processing overhead involved.

The FIFO RAM LIST (EVS3) gives a better performance than the LIFO RAM LIST
(EVS1). In comparing the performance of the FIFO LIST with that of the RAM LIST, more
LOAD CAM processing time should be considered for the latter to simulate the extra overhead
involved with the RAM. For example, a FIFO LIST with 1 is CAM LOAD TIME should be com-
pared with a RAM LIST with 2 Mus CAM LOAD TIME for an accurate performance comparison.
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Table 8 - Effect of Load Time and Advance Load
Time on FIFO RAM LIST

Load Time J Advance Load Time in us
in ,s

0 1 16 1 32 1 64 1 128

1 1 51,8 52,8 53,8 57,8 75,8
2 55,8 51,8 53,8 57,8 76,8
3 62,8 53,8 53,8 56,8 75,8

Table 9- Effect of Load Time and Advance Load
Time on LIFO RAM LIST

Load Time Advance Load Time in As
in,.L5 J 0 J 16 J 32 ! 64 ! 128

1 61,8 50,8 49,8 52,8 67,8
2 124,8 69,8 49,8 51,8 61,8
3 225,8 131,8 86,8 55,8 58,8

The effect of an ADVANCE LOAD TIME on performance is shown in Tables 7, 8, 9. Table 7
shows that increasing the ADVANCE LOAD TIME of the FIFO LIST architecture, eventually
degrades performance. As expected, while the ADVANCE LOAD does not have any significant
effect on a FIFO structure (Table 8), it affects the performance of the LIFO structure (Table 9).
As shown in Table 9, increasing the ADVANCE LOAD TIME to 32 ,s has a better effect on per-
formance than decreasing the loading time from 2 is to 1 ,us.

It is also clear, from Table 9, that the effects of the LOAD CAM processing time and the
ADVANCE LOAD TIME on the LIST performance are interdependent. That is, increasing the
ADVANCE LOAD TIME results in much larger improvement in performance in the slower LOAD
CAM processor case than when using the relatively faster processor.

CONCLUSIONS AND FUTURE RESEARCH

One of the critical stages of the signal sorter system is the Associative Processing stage which
filters the incoming data stream. Greater filtering effect could be achieved by better prediction of
the next arrival time (NTOA) resulting in loading the CAM with the appropriate emitter data at the
right time. Without predicting the NTOA, the Associative Processor would require a CAM size equal
to or greater than the number of emitters in the environment. This number is not known in advance
and could easily be large enough such that a CAM of that size would be very difficult to implement.
The look-ahead scheme simulated in this model of NTOA prediction and CAM loading reduces the
required number of words in the CAM. The necessary CAM size is no longer tightly coupled to the
number of emitters in the environment, it is a function of the PRI distribution and processing
throughput of the system. In the simulation model, 24 CAM words have been used to handle up to
500 different emitters in the environment simultaneously. This CAM size is realizable on a 22.5 cm
(9 in.) by 22.5 cm (9 in.) circuit board using commercially available parts, and has proved to be of
sufficient size in this model.
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The fixing of the small size of the CAM was achieved by adding to the system a hardware
LIST to buffer and order the data before being loaded into the CAM. It is the architecture of this
LIST buffer which was investigated in this research.

These simulation results show that architecture tuning (or dynamic reconfiguration) of the
LIST could improve the performance of the signal sorter considerably. The FIFO LIST configura-
tion resulted in the best performance, but would be expensive and difficult to implement due to the
large number of integrated circuit packages that would be needed. An alternative implementation is
the FIFO RAM. The simulation results indicate that the processing time overhead, associated with
updating the pointers and doing the reconfiguration, does not degrade the performance significantly.
Implementing the RAM LIST in the system would therefore be more cost effective, requiring less
space and power, than adding a larger size CAM.

Dynamic tuning of the LIST should be utilized when the environment density and the PRI
distribution are not known. Once enough intelligence data on the environment has been collected
and the PRI distribution is known, the appropriate fixed configuration of the LIST should be
programmed into the system. The simulation results have indicated that better performance is
obtained when the appropriate LIST configuration is kept fixed. But the simulations have also
shown that fixing the LIST structure (static architecture) performs better only when the environ-
ment is well known beforehand. When the environment is not well known in advance, or unusual
new emitters are encountered, the simulations show that the static system can saturate much
quicker than the dynamic architecture system.

Relatively dense environments have been simulated, in order to investigate the effectiveness of
the small CAM combined with the FIFO LIST. The simulations show that in a dense environ-
ment, the throughput of the array processors, the CAM size, and the LIST management processor
speeds become limiting factors. A summary of the simulation results using dense environments are
shown in Table 10. The simulation program (EVS4) had a FIFO LIST architecture like EVS2. The
emitter turn-on times were in groups of 100 at 0.1-s intervals. The number of emitters was in-
creased up to 500 emitters which is equivalent to approximately one-half million pulses/second. The
CAM and the LIST were still fairly effective in filtering the known data. In order to handle the
above data rate, the CAM size had to be increased and the microprocessor array microcycle time

Table 10 - Performance in a Dense Environment

Number IArray Processor CAM IPerformance
of Emitters Microcycle Time Size No Match/Array Buffer Size

100 0.3 24 131/5
200 0.3 24 1099/8
300 0.3 24 Array Buffer Overflow
300 0.05 24 3326/17
500 0.05 24 Array Buffer Overflow
500 0.1 48 Array Buffer Overflow
500 0.05 48 20566/17
500 0.03 48 15268/17

Run time = 1 s.
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had to be dropped from 300 ns to 50 ns. With current technology, a microcycle time of 100 s is
realizable. The additional drop in the microcycle time (from 100 to 50 ns) could be achieved by
increasing the number of processors (e.g., 6 processors instead of 3) in the array and/or modifica-
tion in the processor array architecture.

In order to utilize the signal sorter for different and varying environments, more architecture
tuning research is needed. For example, the research presented in this report shows that more proc-
essors in the array are required to process larger density environments in real-time. The current
fixed task allocation could be a costly approach to handle very dense environments; the use of
independent processors and a dynamic allocation would be more practical and cost effective. In
the existing system, three processors are utilized in the array. These processors are preassigned to
handle the emitters based on a fixed DOA distribution. The design lacks flexibility and could be
inadequate if the emitters tend to concentrate in a few DOA cells and are not uniformity distributed
over the entire range. This could cause saturations in some sections of the internal memory of the
processors, since the memory is also allocated based on a uniform distribution of DOAs. Dynamic
allocations of both memory space and physical processors could lead to better utilization of the
system hardware and consequently result in better performance.

More simulations should be performed on the LIST structures in dense environments. Also
needed is an analysis of the effect of exotic emitters, such as frequency agile emitters, on the system
performance. It needs to be determined if the circuit architecture design can handle these problems,
and if not, what modifications need to be made in the architecture. Work on these problems is
currently being performed, and will be documented in future reports.
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Appendix

ENVIRONMENT GENERATION SUBROUTINES

SUBROUTINE NDAGE

C
C KEY VARIABLES:
C
C EMS - SEPARATION OF THE INITIAL TURN-ON TIMES OF
C THE EMITTERS
C E(I,J) - PARAMETER I OF EMITTER J, REFER TO FIGURE 1
C FOR DEFINITION OF EACH PARAMETER
C

IMPLICIT INTEGER*4 (I-N)
COMMON/EMIT/E(100,25),EMDUM(5),LLLL,MMMM,EENDUM(102)
COMMON/RAND/IRAN,JRAN
COMMON/DA/EMS

C THIS ROUTINE ESTRBLISHES INITIAL VALUES FOR ALL EMITTERS
C INITALIZE VELOCITIES AND TYPE TO 0
C START

DO 15 J=1,100
E(J,20)=0.
E(J,21)=0.
E(J,22)=0.

15 E(J,23)=0.
C INITALIZE VELOCITIES OF MOVING EMITTERS

DO 25 J=1,100,10
E(J,23)=-1.
E(J,20)=RND(IRAN)*200.-100.

25 E(J,21)=RND(IRAN)*200.-100.
C SET TYPE FOR COLLISION EMITTERS

DO 35 J=2,100,10
35 E(J,23)=+1.

C ENTER MAIN LOOP
DO 100 I=1,100

C SET XYZ COORDINATES
E(I,1)=(RND(IRAN)*20.+2.)*10.**3
E(I,2) =(RND(IRAN)*44.-22.)*10.**3
E(I,18)=RND(IRAN)*1000.

C SET EMITTER TRANSMITTER/ANTENN@ GAIN
E(I,3)=RND(IRAN)*50.+30.

C SET EMITTER ANTENNA BEAMWIDTH
E(I,4)=RND(IRAN)*.41+.09

C SET EMITTER ANTENNA SIDELOBE LOSS
E(I,5)=RND(IRAN)*15.+15.

C SET INITIAL ANTENNA ANGLE
E(I,17)=RTAN2(E(I,2),E(I, 1))

IF(E(I,17).LT.0)E(I,17)=E(I,17)+6.2832
C SET EMITTER MAX ANTENNA ANGLE

E(I,6)=E(I,17)+1.5
C SET EMITTER MIN ANTENNA ANGLE

E(I,19)=E(I,17)-1.5
C SET EMITTER ANTENNA SCAN RATE
3 E(I,7)=RND(IRAN)*1.5+.5
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C SET EMITTER PRI
E(I,8)=RND(IRAN)*.0017+.0003

C SET EMITTER PULSE WIDTH
E(I,9)=RND(IRAN)*.000003+.000001

C MODIFY PULSE WIDTH FOR CW EMITTERS
C IF(I.EQ.8)E(I,9)=.0001
C SET EMITTER CARRIER FREQUENCY

E(I,10)=RND(IRAN)*10.**10+2.*10.**9
C SET EMITTER TURN ON AND OFF TIMES

E(I,11)=RND(IRAN)*EMS
8 E(I,12)=l.

C INITALIZE EMITTER POWER SEEN AT PROCESSOR TO -500.
E(I,13)=-500.

C INITALIZE THE TOA TO THE ON TIME
E(I,14)=E(I,11)

C INITALIZE THE DOA AND THE ON FLAG TO 0
E(I,15)=0.
E(I,16)=0.

100 CONTINUE
C INITALIZE EMITTERS WITH PULSE GROUPS
C DO 20 1=5,100,20
C N=I+1
C K=I+2
C DO 21 J=1,25
C E(N,J)=E(I,J)
C21 E(K,J)=E(I,J)
C E(N,11)=E(I,11)+E(I,9)*2.
C E(K,11)=E(N,11)+E(I,9)*2.
C E(N,14)=E(N,11)
C E(K,14)=E(K,11)
C20 CONTINUE
C ELIMINATE SIDELOBES FOR TRACKING EMITTERS

DO 30 K=3,100,20
30 E(K,5)=0

RETURN
END

SUBROUTINE NEMIT

C
C KEY VARIABLES:
C
C NE - NO. OF EMITTERS IN THE ENVIRONMENT
C TM - CURRENT SYSTEM TIME
C E(I,J) - PARAMETER I OF EMITTER J. REFER TO FIGURE 1
C FOR DEFINITION OF EACH PARAMETER
C XR,YR,ZR - X,Y,Z COORDINATES OF SIGNAL SORTER PLATFORM
C DX,DY,DZ - X,Y,Z DISTANCE BETWEEN EMITTER AND SIGNAL
C SORTER PLATFORM
C R - STRAIGHT LINE DISTANCE BETWEEN EMITTER AND
C SORTER PLATFORM
C SL - SIDELOBE LOSS SEEN BY SIGNAL SORTER
C ABE - ANGLE BETWEEN CENTER LINE OF EMITTER AND
C SIGNAL SORTER
C CONST - CONSTANT USED IN RANGE ATTENUATION EQUATION
C

IMPLICIT INTEGER*4 (I-N)
COMMON/EMIT/E(100,25),TM,XR,YRZR,CONST,NE,L,T(100),TMIN,TMS
COMMON/EE/IMOD,N3,J3,ITLOC,ITPRI,EPT,NEE,TEEP,IPNT,IDAL(64),ILF
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1 ,FTIM,TEEL,TTLOC,TLEEP,IMODEL,IP(64),IFF,IHL(64),ILPNT,ILP
COMMON/RAND/IRAN,JRAN

C DOUBLE PRECISION SL,DX,DY,DZ,ABE,R,A
C START

DO 3 J=i,NE
C CHECK THE ON TIME AND THE OFF TIME

IF(TM.GT.E(J,12))GO TO 3
IF(TM-E(J,11)) 3,1,1

C UPDATE THE ANTENNA ANGLE AND CHANGE SIGN IF LIMITS EXCEEDED
1 E(J,17)=E(J,17)+E(J,7)*E(J,8)

IF(E(J,17).GE.E(J,6)) E(J,7)=-E(J,7)
IF(E(J,17).LE.E(J,19)) E(J,7)=-E(J,7)

C CALCULATE THE EMITTER POSITION
E(J,8)=E(J,8)
IF(E(J,23))9,10,11

C CALCULATE FOR FIXED EMITTER
10 DX=E(J,1)-XR

DY=E(J,2)-YR
DZ=E(J,18)-ZR
GO TO 50

C CALCULATE FOR MOVING EMITTER
9 E(J,l)=E(J,i)+E(J,20)*E(J,8)

E(J,2)=E(J,2)+E(J,21)*E(J,8)
E(J,18)=E(J,18)+E(J,22)*E(J,8)
GO TO 10

C CALCULATE FOR COLLISION COURSE EMITTER
11 DX=E(J,1)-XR

DY=E(J,2)-YR
DZ=E(J,18)-ZR
R=SQRT(DX*DX+DY*DY+DZ*DZ)
E(J,20)=600.8DX/R
E(J,21)=600.*DY/R
E(J,22)=600.*DZ/R
GO TO 9

C CGLCULATE THE DOO
50 E(J,15)=CTHN2(DY,DX)

IF(E(J,15).LT.0) E(J,15)=E(J,15)+A.D83X
C DETECTION OF THE SIDELOBE POWER

SL=O.
LBE=E(J,t7)
IF(ABE.GT.6.2832)EBE=7BE-6.2832
IF(ABE.LT.6.)RBE=ABE+6.Z832
BE=ABS(E(J,L5)-ABE-3.1416)
IF(ABE.LE.E(J,4)) GO TO 4
SL=E(J,5)

C CALCULETION FOR THE RECEIVER POWER
4 RC SQRT(DXI DX+DY*DY+DZ8DZ)

E(J,13)=E(J,3)-CONST-D0.*RLOG(RD185Z.)-SL
C CELCULCTION FOR THE TOR

E(J,14)=E(J,CC)+RI(2.9979F10.*R)
C UPDTE THE ON TIME
C IF(J.EQ.9) E(J,O )=E(J,8)+RND(IRRN)8300.*10.8*-6-RND(IRRN)
C 1 *150.*10.*E-6

E(J,11)=E(J,l-)+E(J,8)
IF(E(J,11).LE.E(J,14)) WRITE(1,20) J

20 FORMAT(2X,'EXCESSIVE PRI IN EMIT. J=',I3)
C CALCULATION FOR FREQUENCY HOPPING EMITTERS
C IF(J.LE.NEE) E(J,10)=E(J,10)*(0.8+0.4*RND(IRAN))
3 CONTINUE
60 RETURN

END
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